Multi-layer Budding of Oversized Rubber 
(*Hevea brasiliences*) Seedlings: 
Success and Growth in Different Soil Media

Corpuz, Onofre S. * and K. U. Guiamal a

Cotabato Foundation College of Science and Technology (CFCST), Doroluman Arakan, Cotabato, Philippines.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJAAR/2021/v17i3330197

Editor(s):
(1) Dr. Daniele De Wrachien, University of Milan, Italy.
Reviewers:
(1) Juliana Nneka Ikpe, Akanu Ibiam Federal Polytechnic, Nigeria.
(2) Aminu Yahaya, College of Education and Preliminary Studies, Nigeria.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/74907

Received 02 August 2021
Accepted 11 October 2021
Published 06 December 2021

Original Research Article

ABSTRACT

The study on Multi-layer budding of oversized rubber seedling aimed at evaluating the success of multiple budding operation on single seedling of rubber tree species comprising of 4 to 7 budding layers per seedling. The experiment used randomized complete blocked design layout with 3 treatments such as 4, 5 and 7 layer budding in a single seedling replicated 4 times. Results revealed that the highest number of budding layers succeeded significantly higher as compared to 4 and 5 layers. The main survival percentage is about 79.17% for the 7 layers, 76.52% for the 5 layers and only about 55.36% for the 4 layers. Pure garden soil reported to have significant results on sprouting rate, sprout length, stalk diameter and number of leaves. This finding emphasized that budding of rejected oversized rubber seedlings grown in an abandoned nurseries can be reutilized for mass production of budded cuttings through multiple budding of 7 layers per seedlings to maximize planting materials derived from single seedlings.

Keywords: Multi-layer budding; oversized rubber seedlings; survival.
1. INTRODUCTION

Rubber (Hevea brasiliensis) is a plant belongs to the family of Euphorbiaceae originated in tropical South American which produces a latex, a milky white sap. Budding describes any of several techniques in which a section of a stem with leaf buds is inserted into the stock of a tree or Seedling. The quality of buds is one of the major variables which decide the quality of the offspring in terms of development. The choice of buds in a bud wood at the time of bud uniting is exceptionally imperative to guarantee compatibility and generation of quality planting materials inelastic. Budding is among the foremost costly proliferation strategies, outperforming even micro propagation. Budding, which could be a shape of uniting, is three times more exorbitant than cuttings and fourteen times more costly than seedling engendering. The cultivation and ranger service businesses have looked to create clonal proliferation frameworks that maintain a strategic distance from labor-intensive graft age.

Industrial propagation by rooted cuttings of mature selected clones of Hevea brasiliensis among the most expensive propagation techniques. The significance of Hevea brasiliensis (elastic tree) as a cash trim keeps expanding justifying the improvement of unused and more effective methods than the bud-grafting customarily utilized for mass-producing superior planting material, [1].

While budding technique in rubber seedling is an effective methods in plant propagation, it is noted however, that no studies conducted to determine multiple budding in a single seedlings, thus, the researchers tried to assess the success of multilayer budding in single oversized rubber seedling to utilize and maximize planting materials derived from unused seedlings in the abandoned nurseries of rubber planters in Makilala, Cotabato Philippines.

2. METHODOLOGY

The study utilized simple randomization of experimental materials such as assigning of the number of budding in a single seedlings such as 4, 5, and 7 buds inserted in a single seedlings.

2.1 Preparation of the Experimental

Area for Multilayer budding

Rootstock Preparation: A healthy oversized rubber seedling was used as the rootstock of the multistage budding. The area of seedlings was cleaned to become a smooth working area.

Selecting and handling of bud wood: The rubber variety (RRIM 600) of best quality scion was collected early in the day then detached with clean knives and immediately placed in a moistened plastic bag.

Methods of Budding: A healthy rubber bud eye was collected. Discard the soft tips of the bud sticks then insert the bud stick to the rootstock. Wrap the bud sticks in moist burlap, moss, or paper to prevent drying out. The rubber seedling had at least 4-7 budded with 20cm apart.

After 21 days, the buds are inspected and harvested by cuttings of the successful buds and planted in a prepared polybag filled with growing media.

Preparation and planting

An area of 4m x 5m was cleaned thoroughly with free weeds and was closed by fencing to protect the area from disturbances. The cut budded stems were soaked in a diluted root hormones (Fig. 1) before planting in a prepared 6" x 8" polyethylene bags filled with different soil media such as pure garden soil, 1:1 ratio of soil and goat manure, 1:1 ratio of soil with sugarcane mud press, and 1:1:1 ratio of soil, goat manure, and sugarcane mud press.

3. RESULTS AND DISCUSSION

3.1 Success Rate

The succeeded buds in a different layer per seedling was presented in Table 1. The multiple layer budding was conducted in February 2020 at Makilala Cotabato during the dry season (Fig. 2). Out of 339 budded in different layers, it was about 74.34% (252 buds) survived. The highest rate of bud success was in a 7 layers of 79.17%, whereas, the 4 layers has the lowest success rate of only 55.36% (31 buds).

The finding is supported by Kuriakose [2] who stated that brown budding has only 60–80% success rate while young budded plants has 95 – 98% success level. Corpuz [3] stated that brown stem cut rubber significantly gave higher rate of survival of 74% as compared to 41% in green stem cut.
Fig. 1. Soaking of budded stem cut rubber in diluted growth hormone

Table 1. The successful rate of multiple budded rubber seedlings

<table>
<thead>
<tr>
<th>No. of bud layer per Seedling</th>
<th>No. of budding</th>
<th>Successful buds</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 layers</td>
<td>56</td>
<td>31a</td>
<td>55.36%</td>
</tr>
<tr>
<td>5 layers</td>
<td>115</td>
<td>88b</td>
<td>76.52%</td>
</tr>
<tr>
<td>7 layers</td>
<td>168</td>
<td>133c</td>
<td>79.17%</td>
</tr>
<tr>
<td>Total</td>
<td>339</td>
<td>252</td>
<td>74.34%</td>
</tr>
</tbody>
</table>

Mean with the same letter subscript are insignificantly different at 5% using LSD

Fig. 2. Multi-layer buds

Table 2. Growth performance of the stem-budded rubber using different soil media

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days of Sprouted (%) 35days</th>
<th>Sprout length (cm)</th>
<th>Stalk Diameter (mm)</th>
<th>No. of Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Garden Soil</td>
<td>85a</td>
<td>17.90a</td>
<td>4.69a</td>
<td>7.00a</td>
</tr>
<tr>
<td>1:1 ratio of soil and goat manure</td>
<td>66.3a</td>
<td>6.91b</td>
<td>3.66b</td>
<td>5.00b</td>
</tr>
<tr>
<td>1:1 ratio of soil with sugarcane mud press</td>
<td>25b</td>
<td>2.56b</td>
<td>3.17b</td>
<td>2.75c</td>
</tr>
<tr>
<td>1:1:1 ratio of soil, goat manure, and sugarcane mud press</td>
<td>38.8b</td>
<td>6.84b</td>
<td>3.50b</td>
<td>4.12b</td>
</tr>
</tbody>
</table>

Mean with the same letter subscript are not significantly different at 5% using LSD
3.2 Growth Performance of Stem-budded Rubber in different soil media

Table 2 shows the growth performance of the multi-layer budded stem-cut rubber using different soil media, such as pure garden soil, 1:1 ratio of soil and goat manure, 1:1 ratio of soil with sugarcane mud press, and 1:1:1 ratio of soil, goat manure, and sugarcane mud press. The pure garden soil has the highest sprouting growth rate of 85% which is significantly higher compared to the other soil media. The highest mortality of 1:1 ratio of soil and sugarcane mud press was supported by the study that states using 100 percent sugarcane filter cake compost (a natural waste by-product of sugarcane processing mills; bagasse) for the seeds sown resulted in lower total percent germination [4]. Additionally, the 25% SBA consistently produced the greatest cantaloupe seedling growth across various plant parameters measured [5]. The pure garden soil produced the highest plant height of 7.90cm, stalk diameter of 4.69mm and the number of leaves (7 pcs) which is also significantly higher as compared to other treatments or soil media used in the experiment.

4. CONCLUSION

The researchers concluded that multi-layer budding operation in oversized rubber seedling is very much possible having a success levels of about 79% for 7 layers budding in single plant. A pure garden soil can be an effective media in growing stem cut budded rubber seedlings obtaining a sprout growth rate of 85% in 35 days after planting.

5. RECOMMENDATION

Following the results of the experiment, the researchers recommended to utilize the seedlings grown of bigger sizes in abandoned nurseries for propagation of quality planting materials of rubber tree species. This can reduce cost, time, and labor in producing planting materials from seeds and other young seedlings of buddable size.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES


© 2021 Onofre and Guimal; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/74907