Characterization and Evolution of Dishevelled Genes in Paralichthys olivaceus

Xiaolong Wu¹, Rui Li¹, Meiting Peng¹ and Zhigang Wang¹*

¹MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Authors’ contributions

This work was carried out in collaboration among all authors. Author XW designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors RL and MP managed the analyses of the study. Author ZW managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJAAR/2019/v9i129991

Authors:

(1) Prof. Daniele De Wrachien, Department of Agricultural and Environmental Sciences, The State University of Milan, Italy.

Reviewers:

(1) Tiogué Tekouénégnining Claudine, University of Dschang, Cameroon.
(2) M. Thangaraj, Annamalai University, India.
(3) Iyiola, Adams Ovie, Osun State University, Nigeria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/46729

Received 17 November 2018
Accepted 27 February 2019
Published 13 March 2019

ABSTRACT

The study examined the key gene Dishevelled (Dvl or Dsh) in Wnt (Wingless and INT-1) signaling pathways. The gene (Dvl) was characterized in the flat fish Paralichthys olivaceus for its expression pattern structure and phylogenetics at the Ocean University of China in Qingdao, China in 2018. Three gene paralogues (Dvl1, Dvl2 and Dvl3) of the Dvl family were cloned in P. olivaceus and a N-terminal DAX domain, a central PDZ domain and a C-terminal DEP domain were discovered in all three protein paralogues. Phylogenetic analysis revealed that Dvl genes in P. olivaceus are most closely related to those in marine teleosts Larimichthys crocea and Stegastes partitus, followed by those in Cynoglossus semilaevis. For each Dvl gene, the genes in teleosts fall into a clade independent from the ones in other vertebrates, suggesting that the duplication of Dvl genes occurred prior to the divergence of vertebrates. The temporal expression patterns of the three Dvl genes were characterized during the embryonic development of teleosts. In P. olivaceus, all three Dvl genes remain at low expression levels during the early stages of development until gastrula stage, when the expression of Dvl1 was significantly up-regulated. The research revealed

*Corresponding author: Email: zgwang@ouc.edu.cn;
vastly different temporal expression patterns of Dvl genes and suggested that the structure of Dvl proteins is conserved, but the expression patterns of Dvl genes vary significantly among different classes.

Keywords: Dishevelled; Paralichthys olivaceus; expression; phylogenetics.

1. INTRODUCTION

Disheveled (Dvl or Dsh) is a family of cytoplasmic phosphoprotein that acts as the signal transducer in Wnt signaling pathways. To date, three genes encoding Dvl protein isoforms have been discovered in most vertebrates [1]. They belong to a multi-gene family and are possibly the results of both genome duplication and gene loss [2].

Wnt signaling pathways are a type of highly conserved signal transduction pathway existing in a wide variety of species ranging from Caenorhabditis elegans to human [3], and are involved in physiological processes including early embryonic development, cell polarity establishment, tissue regeneration and the development of the reproductive system [4].

Three Wnt signaling pathways have been characterized: the canonical Wnt/β-catenin signaling pathway, which activates the transcription of downstream genes by promoting the nuclear import of β-catenin [5]; the non-canonical Wnt/PCP signaling pathway, which activates the terminal transcription factor c-JUN (AP1) by promoting JNK (JUN-N-terminal kinase) [6], and the non-canonical Wnt/Ca²⁺ signaling pathway, which releases intracellular calcium to regulate cell adhesion and gene expression [7].

The activation mechanisms of the three Wnt pathways are identical, with extracellular Wnt protein binding to a Frizzled family receptor and a co-receptor, subsequently passing external signals to the cytoplasmic Dvl proteins [8]. In the canonical Wnt signaling pathway, Dvls inhibit the degradation of β-catenin by prohibiting the assembly of proteins adenomatous polyposis coli, Axin and glycogen synthase kinase-3β into the destruction complex [4]. The accumulation of cytoplasmic β-catenin leads to its increased nuclear import and subsequent binding with transcription factors TCF/LEF, thus promoting the transcription of downstream genes [4].

In addition to being critical positive regulators of the three Wnt signaling pathways, Dvls are able to interact with proteins of other signaling pathways, thus enabling the cross-talk between Wnt and other pathways [9-11].

Though the functions and expression patterns of Dvl genes have long been subjected to intensive study due to their medical and developmental significance, quantitative research concerning the expression levels of Dvl genes in vertebrate embryos were limited to several type species including mouse, chicken and Xenopus [2,12,13]. Moreover, the vast majority of these studies revealed only the spatial, but not temporal, expression patterns. The only research to date concerning the temporal expression patterns of Dvl genes during embryonic development was conducted in rhesus monkey by Zheng et al. [14]. But only Dvl1 and Dvl2 were characterized and data after blastocyst hatching were not obtained due to technical constraints.

P. olivaceus is one of the most important cultured marine flatfish species in East Asia and takes up a considerable proportion in Asian fish markets. P. olivaceus have been the subject of extensive study since the 1970s, mainly focusing on sexual differentiation [15,16], pathology [17,18] and metamorphosis [19,20]. Studies concerning several signaling pathways have also been conducted [21,22]. However, the role and expression pattern of Wnt pathway genes during embryonic development in P. olivaceus have remained unknown.

The research serves as the foundation of further research into the role of Dvl during the early development in vertebrates, especially teleosts, and its status in molecular evolution.

2. MATERIALS AND METHODS

2.1 Experimental Site

The study was carried in Qingdao, China. And it proceeded from 17th March 2018 to 25th November 2018. The P. olivaceus eggs obtained from the Yellow Sea Aquatic Product Co., Ltd, China, and the experiments were done at the Ocean University of China in Qingdao.
2.2 Embryo Collection

*P. olivaceus* eggs were fertilized *in vitro* in 22°C (±1°C) filtered seawater and underwent subsequent stages of development in normal seawater. Embryos of fifteen developmental stages (fertilized egg, 2-cell stage, 16-cell stage, morula, high blastula, low blastula, early gastrula, late gastrula, neurula, tailbud stage, during hatching, post hatching, 12hph, 24hph, 36hph) and larvae were sampled. Every thirty larvae or embryos of the same stage were collected in a 1.5mL centrifuge tube and were rinsed twice by PBS. Rinsed specimens were quick-frozen with liquid nitrogen and preserved at -80°C. Experimental protocols were approved by the Animal Care and Use Committee of Ocean University of China.

2.3 RNA Extraction and cDNA Synthesis

Total RNA from *P. olivaceus* embryos and larvae were extracted with TRIzol reagent (Invitrogen, Carlsbad, USA) according to the manufacturer’s protocol. RNA was purified by the removal of DNA and protein using DNasel (Takara Biotechnology, Dalian, China) and BIOMED RNA clean-up kit (BIOMED, Beijing, China). cDNA was synthesized by the M-MLV reverse transcription system (Takara Biotechnology, Dalian, China).

2.4 Protein Domain Prediction and Analysis

The conserved domains of the Dvl family proteins in *P. olivaceus* were predicted on SMART. Primary structure of the conserved domains were illustrated according to the results.

2.5 Phylogenetic Analysis

In order to investigate the evolutionary relationships of the three *Dvl* genes between *P. olivaceus* and other vertebrates, we conducted molecular phylogenetic analysis based on protein sequences. Amino acid sequences of Dvl proteins in vertebrates were acquired from NCBI (http://www.ncbi.nlm.nih.gov/nuccore/?term=Dvl). Apart from the protein sequences of *P. olivaceus*, we also utilized the sequences of *Danio rerio*, *Cynoglossus semilaevis*, *Larimichthys crocea* and *Stegastes partitus*, representing teleosts, *Xenopus laevis*, representing amphibians, and *Mus musculus* and *Homo sapiens*, representing mammals, for further analysis. Utilizing the MEGA6 software, we constructed the phylogenetic tree based on the neighbor joining calculation method.

2.6 qRT-PCR Assay

cDNA acquired through *in vitro* reverse transcription was diluted to 20 ng/μL and was used as the template for qRT-PCR. Primers of fluorescent quantitative PCR designed on IDT were as follows:

- Dvl-1-Fw: TTGACGACTTGCCCTTTATCTGC;
- Dvl-1-Rv: TCTCAGGTAGCCGTGTTCAG;
- Dvl-2-Fw: TCTGTGACTCCGAGGATGACG;
- Dvl-2-Rv: CCCACAATCTAGTGAAG;
- Dvl-3-Fw: CCAGTTCTGTGGGGAGTTT;
- Dvl-3-Rv: CGTTACGCCAGCTTTCTAT.

18S rRNA was chosen as the reference gene, with primers being:

- 18S rRNA-Fw: GGTACGGGGAATCAGGGT;
- 18S rRNA-Rv: TGCCCTCCTTGGATGTTG.

qRT-PCR amplification was carried out on LightCycler 480 (Roche Applied Science, Penzberg, Germany) with Taq polymerase (Takara Biotechnology, Dalian, China) under the following conditions: 95°C (5 min) and 45 cycles of 95°C (15 s) and 60°C (45 s). cDNA from each stage was amplified for three times and the results were averaged to represent the expression level of the certain stage.

2.7 Data Analysis

Copy numbers of both *Dvl* genes and reference genes were calculated based on the 2^(-ΔΔCT) method. Further calculation revealed the relative expression of *Dvl* genes during each stage. Prism 6 and SPSS 20.0 were utilized for data analysis and illustration and significance analysis, respectively.

3. RESULTS

3.1 Dvl Protein Domains

The sequences of three *Dvl* genes, encoding 559, 768 and 785 amino acids, respectively, in *P. olivaceus* were obtained through molecular cloning. Protein domain prediction by SMART revealed the existence of an N-terminal DAX domain, a central PDZ domain and a C-terminal DEP domain in proteins encoded by all three
genes, which is consistent with previous studies [23]. The molecular weight of each domain was highly conserved (Fig. 1).

Though the open reading frames of the three Dvl genes displayed low overall homology, the amino acid sequences at the three predicted domains showed relatively high sequence identity (Fig. 2).

The results above indicate that the structure of the three proteins encoded by the Dvl family genes was highly conserved among distinct species and may therefore share, at least some, similar functions.

3.2 Evolutionary Relationships of the Dvl Gene Family

To reveal the evolutionary relationships of Dvl genes between P. olivaceus and other vertebrates, the molecular phylogenetic tree consisting of three Dvl genes in D. rerio, C. semilaevis, P. olivaceus, L. crocea, S. partitus, X. laevis, M. musculus and H. sapiens was constructed.

As is shown in Fig. 3, the three Dvl genes fall into three distinct clades, with the clades of Dvl2 and Dvl3 combining into a larger clade diverged from that of Dvl1. For each Dvl paralogue, genes in teleosts and those in other vertebrates fall into two distinct clades, suggesting that the duplication of Dvl genes occurred prior to the divergence of vertebrates.

Dvl1 and Dvl2 in P. olivaceus fall into one clade first with those of L. crocea and S. partitus, and subsequently with those of C. semilaevis, while the freshwater fish D. rerio is on the edge of the teleost clade, differing significantly from the marine teleosts. Curiously, Dvl3 in S. partitus and C. semilaevis fall into a clade independent from all other clades.

3.3 The Expression Patterns of Dvl Genes during Early Development

The quantitative results of qRT-PCR reveals the temporal expression patterns of Dvl genes during the early development of P. olivaceus (Fig. 4).

The expression level of Dvl1 is low until gastrula stage, but is dramatically up-regulated thereafter, indicating the initiation of the zygotic Dvl1 gene expression. The expression level of Dvl1 reaches a peak during hatching, followed by a decline thereafter, and eventually resume to high level at 12h post hatching.

The expression of both Dvl2 and Dvl3 remains at low levels during embryonic development and displays similar trends in the early stages. The expression levels of the two genes both show a downward trend until 2-cell stage and rise thereafter. During gastrula stage there is another decline and in the somites stage, the expression levels rise significantly. The expression levels of both genes are down-regulated after hatching and rises again at 36h post hatching (Dvl2) and 12h post hatching (Dvl3), respectively.

Fig. 1. Conserved domains of the P. olivaceus Dvl proteins predicted by SMART
Fig. 2. Alignment of amino acid sequences in three *P. olivaceus* Dvl proteins. Conserved sequences are highlighted in black.

Fig. 3. The phylogenetic tree of Dvl genes in vertebrates.
Fig. 4. Relative expression levels (mean±SEM) of the three Dvl genes during *P. olivaceus* embryonic development based on results from qRT-PCR. Abbreviations: fe, fertilized egg; blas, blastula; gas, gastrula

4. DISCUSSION

Being ubiquitous among both invertebrates and vertebrates [24], the highly conserved Wnt signaling pathways play a vital role in the regulation of the physiological activities in animals and their malfunction would result in embryo developmental disorders [25,26] and carcinogenesis [27,28]. As a positive regulator in Wnt signaling, Dvl initiates the transcription of downstream genes by inhibiting the degradation of cytoplasmic β-catenin [29]. The abnormal expression of Dvl genes would result in the disruption of Wnt signaling pathways and eventually lead to disorders and diseases [30, 31].

Three isoforms of the cytoplasmic phosphoprotein Dvl have yet been characterized in mammals, all of them comprise 600 to 700 amino acids [32]. Three highly conserved domains in Dvl proteins have been described. The N-terminal DAX domain mediates homopolymerization and the interaction between Dvl and Axin [33]. The central PDZ domain binds with CKI and is the activator of the Wnt signaling pathway [34,35]. The C-terminal DEP domain functions as the signal transducer in the Wnt
signaling pathway, and is the regulator of cell polarity [36,37]. In this research, three aforementioned domains were found in all three *P. olivaceus* Dvl isoforms, suggesting that the Dvls are highly conserved between distinct species.

The phylogenetic tree constructed on the basis of amino acid sequence alignment has revealed that the divergence of genes Dvl2 and Dvl3 occurred after their split from the clade of Dvl1, therefore Dvl2 and Dvl3 share higher levels of identity in terms of evolutionary relationships.

It has been proposed that the diversification of vertebrate genes was caused by two rounds (2R) of whole-genome duplication (WGD) during the early evolution of deuterostomes [2,38]. However, a third round of WGD, restricted to teleosts, was thought to have occurred after the divergence of teleosts and other vertebrates [39]. This third duplication, named as the fish-specific genome duplication (FSGD), has been supported by various comparative genomics studies [40,41].

According to the 2R theory, the ancestral Dvl gene duplicated during the first round of WGD, giving rise to two paralogues Dvl1/4 and Dvl2/3. The two paralogues underwent a second stage of WGD and produced Dvl1, Dvl2, Dvl3 and Dvl4. Dvl4 was lost and consequently only three paralogues remained [2]. If the FSGD did occur, there should be at least three more Dvl paralogues in ray-finned fishes. However, no fish species with more than three Dvl paralogues has been discovered to date [1]. It could be hypothesized that the Dvl genes produced by 2R were duplicated during the FSGD but subsequently underwent a massive gene loss, resulting in the elimination of three to five Dvl paralogues. However, similar to previous studies [2], no results was obtained to substantiate this hypothesis. As a result, the possibility of FSGD being the result of massive local duplication cannot be ruled out.

The clade containing the Dvl3 genes in *C. semilaevis* and *S. partitus* split from the clade of other Dvl genes before the divergence of Dvl1, Dvl2 and Dvl3 was intriguing. This result indicated that a local duplication might have taken place prior to the first round of WGD, but was restricted to several species. This may require further exploration.

Temporal expression patterns of all three Dvl gene paralogues during vertebrate embryonic development was characterized for the first time. In *P. olivaceus* embryos, Dvl1 was expressed at a level far higher than those of Dvl2 and Dvl3. A similar study that characterized the expression patterns of Dvl1 and Dvl2 throughout all stages of embryonic development was conducted in rhesus monkey embryos and showed vastly different patterns, with the expression level of Dvl2 exceeding that of Dvl1 until hatching [14]. Similarly, another study conducted in human embryonic kidney cells and mouse teratocarcinoma cells showed that the expression level of Dvl2 much was higher than that of the other two paralogues [13]. Though the temporal expression patterns of Dvl genes in other species remain unexplored, data available to date indicate the possibility that the temporal expression patterns between mammals and teleosts are substantially different due to distinct developmental regulation mechanisms. Moreover, spatial expression patterns of Dvl genes during vertebrate embryonic developments have to date been characterized in mouse, chicken, and *Xenopus* and also revealed significant differences between these species [2]. Taken together, these results possibly indicate that both spatial and temporal expression patterns of Dvl genes can to some extent reflect the evolutionary relationships between species.

5. CONCLUSION

The result of this study provided insight into the regulation mechanisms of the development of *P. olivaceus* and other teleosts. The Dvl gene family in *P. olivaceus* was characterized for its structure, evolution and expression pattern during arly embryonic development, which may serve as the basis for further research into the evolutionary history of Dvl genes.

ACKNOWLEDGEMENTS

This study was supported by the Fundamental Research Funds for the Central Universities (No. 201822026) and National Natural Science Foundation of China (Grant No. 31372511). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES


